

Computational Imaging for Extreme Fields of View

Andy Harvey¹, Guillem Carles¹, James Downing^{1,2}, Gonzalo Muyo¹, Miguel Preciado¹, Chen Shouqian^{1,4}, Andy Wood³ and Nick Bustin³ ¹University of Glasgow ²ST Microelectronics ³Qioptiq ⁴Harbin Institute of Technology, China E-mail: andy.harvey@glasgow.ac.uk, Tel: 0141 330 8606

Outline

- Traditional approaches to extreme fields of views
- Computational imaging for
 - Wide field of view for single cameras
 - Combining cameras/optics into parallel channels offers
 - $4\pi/360^\circ$ field of view
 - And high angular resolution
 - Multi-functionality

Traditional approaches to panoramic imaging

- Total pixel count limited by detector array
- Optical aberrations limit resolution

J. S. Chahl and M. V. Srinivasan, "Reflective surfaces for panoramic imaging," Appl Optics (1997) 1. C. Pernechele, "Hyper hemispheric lens," Opt. Express **24**, 5014–6 (2016).

The curved detector array

- Spherical detector reduces optical aberrations and enables simpler optics
- Single or multiple detectors?

- 1. J. Ford, I. Stamenov, S. J. Olivas, G. Schuster, N. Motamedi, I. P. Agurok, R. Stack, A. Johnson, and R. Morrison, "Fiber-coupled Monocentric Lens Imaging," Imaging and Applied Optics CW4C.2 (2013).
- 2. I. Stamenov, A. Arianpour, S. J. Olivas, I. P. Agurok, A. R. Johnson, R. A. Stack, R. L. Morrison, and J. E. Ford, "Panoramic monocentric imaging using fibercoupled focal planes," Opt. Express **22**, 31708–14 (2014).

A short history of the computational imaging toolbox

- The tradition: single lens and single detector array
 - Trade Field of View for angular resolution
 - Optical aberrations increase lens complexity, size, weight, cost
- Computational imaging: transfer complexity from optics to computation
- Promising Computational Imaging techniques
 - Wavefront coding
 - Increased FoV (x2 linear) from simpler optics
 - Parallelised imaging
 - Gigapixel, wide-field, scaleable
 - Single-aperture: Multiscale
 - Multi-aperture and integral imaging
 - Superimposed imaging
 - Efficient use of high-cost (infrared) detector arrays
- Compact, scaleable architectures
 - High angular-resolution
 - Gigapixel imaging
 - High sensitivity (low f/#)

Optical aberrations

- Diffraction is scale invariant
- Geometric aberrations increase with dimensions and field of view
- Shannon Limit for a 1cm diameter lens
 - Visible: $N_{pix} \sim 10^9$
 - Thermal infrared : $N_{pix} \sim 2.5 \times 10^6$

Multiscale imaging

Multiscale imaging

Brady, D. J., et al. (2012). Multiscale gigapixel photography. *Nature*, 486(7403) 2012 Daily Mail

Image reconstruction

Recorded image

Reconstructed images

SNR=100

SNR=25

Principle advantage

- Wide field of view from compact optics
 - Single detector array
 - High throughput (eg f/1)

Multi-aperture imaging

- Multi-aperture super resolution in snapshot
- Equivalent performance to conventional system
 - but with reduced length
 - Aliasing enables super-resolution

 $L_N = L_1 / N$: Length reduction by a factor of N

HR Multi-aperture imaging

Solution 1

Solution 2 Free-form lenslet array Multi-camera array Multi-aperture mosaic

Solution 3

Solution 1: Free-form lenslets

- 3x3 multi-aperture design with customized 2 elements
 - Single detector: 640x640 pixels @25µm pitch
 - Wavelength in the LWIR range: $8\mu m$ $12\mu m$
 - Non-redundancy achieved by design (varying distortions)

G Carles, G. Muyo, N. Bustin, A. Wood and A.R. Harvey, JOSA A- 32, 3, pp 411-419 (2015)

Solution 1: Free-form lenslets

Solution 1: Free-form lenslets

Solution 2: Multi-camera imaging: experimental 50-Mpixel imager (visible)

Carles, G., Downing, J. & Harvey, A.R., Opt. Let. 39(7), p.1889 (2014).

Solution 3: Multi-aperture foveal mosaic

- Camera array with integrated multi-prism element
 - Super-resolution in biomimetic fovea PLUS FoV extension
 - $-50^{\circ}x40^{\circ}$ \rightarrow 100°x80°

Solution 3. Multi-aperture mosaic

• Simulation using Zemax warp calculation

CeAtrab Gaenasra

Reconstructed image

Foveal multi-aperture: a bookcase

Spherical camera arrays

• Now available as consumer products

Note similarity to Multiscale imaging

108 Mpixel snapshot

- Multi-aperture imaging (with field overlap) introduces parallax...
 - 3D imaging and ranging
 - Seeing through obscurities

- And multi-functionality
 - Multi-spectral
 - Foveal

Vaibhav Vaish, PhD thesis Stanford University, 2007

And in the infrared?

(a)

- Spherical-camera Thermal Imaging
- 3D imaging
- Imaging through obscurations
- Convenient deployment

SR @ d=3 m

SR @ d=6 m

Superimposed imaging: dual field of view

- High-performance detector arrays in the thermal infrared can dominate system cost
 - Multiple channels share a single detector array?
- Multiple images superimposed onto a single detector array can be computationally separated

Superimposed video

Superimposed imaging with ATR

• ATR can perform directly on superimposed images

Conclusions

- Single detector array computational imaging
 - Wavefront coding, multiscale/multi-aperture
 - More compact, lower weight wide-field cameras
- Multi-detector array
 - Multiscale and Multi-aperture
 - Scaleable spherical or part-spherical cameras
 - Multi-aperture offers multi-functionality
 - 3D imaging and ranging
 - Seeing through obscurations
 - Multi-spectral
 - Foveation
 -
- The role of the optics is to transfer information to the detector
 - It does not need to look like an image
 - The computer does the rest
 - Image reconstruction
 - ATR